报告题目: | Linear Quaternion Differential Equations: Basic Theory and Fundamental Results |
报 告 人: | 夏永辉 教授 |
浙江师范大学 | |
报告时间: | 10日30日(周五)上午9:30-10:30 |
报告地点: | 九龙湖数学系第一报告厅 |
相关介绍: | Abstract: This paper establishes a systematic frame work for the theory of linear quaternion-valued differential equations (QDEs), which can be applied to quantum mechanics, Frenet frame in differential geometry, kinematic modelling, attitude dynamics, Kalman filter design, spatial rigid body dynamics and fluid mechanics, etc. On the non-commutativity of the quaternion algebra, the algebraic structure of the solutions to the QDEs is not a linear vector space. It is actually a left- or right- module. Moreover, many concepts and properties for the ordinary differential equations (ODEs) can not be used. They should be redefined accordingly. A definition of Wronskian is introduced under the framework of quaternions which is different from standard one in the ordinary differential equations. Liouville formula for QDEs is given. Also, it is necessary to treat the eigenvalue problems with left- and right-sides, accordingly. Upon these, we studied the solutions to the linear QDEs. Furthermore, we present two algorithms to evaluate the fundamental matrix. Some concrete examples are given to show the feasibility of the obtained algorithms. Finally, a conclusion and discussion ends the paper. 夏永辉个人简介:男、博士、教授,2012年入选浙江省“新世纪151人才工程”第二层次;2014年入选“中国高被引学者榜单”;2013年获 “浙江省优秀科技工作者” 荣誉称号(全省共100名);2011年度浙江省科学技术奖一等奖1项(排名第三,共7人);2009年度福建省科学技术奖三等奖1项(排名第一)。近年来主持国家自然科学基金2项(面上项目和青年项目各1项),主持浙江省自然科学基金2项,主持欧盟研究基金项目(MSCA-IF-2014-EF:Marie Curie Individual Fellowship) 1项。2012年7月-2013年7月在斯洛文尼亚Maribor大学做研究员一年。2015年1.11―1.16,访问香港理工大学;2015年1.16-2.14 访问澳门大学。 |