题 目:Symmetry results for entire solutions of a biharmonic equation with exponential nonlinearity
报 告 人: 周风 教授
华东师范大学数学系、华东师范大学偏微分方程中心
时 间:9月29日(星期四),下午15:00—16:00
地 点:九龙湖校区数学系第一报告厅
摘 要: We obtain necessary and sufficient conditions for an entire solution of a biharmonic equation with exponential nonlinearity to be radially symmetric. We give the asymptotic expansions of the solution and its laplacian at infinite and then apply the moving plane method for a system of equations. We give also a short survey on the structure of solutions set on this type of equations.
报告人简介:周风,华东师范大学数学教授, 研究方向为非线性分析与偏微分方程, 擅长单调算子理论,凸分析、对偶理论及其在非线性偏微 分方程中的应用,在几何、数学物理中若干非线性偏微分方程问题研究方面取得了突出的成就,成果发表在 CPAM,C. R. Math. Acad. Sci. Paris,Ann. Inst. H. Poincaré Anal. Non Linéaire,J. Differential Equations,J. Funct. Anal., Calc. Var. PDE等一系列高水平杂志。